On the combinatorial invariance of Kazhdan-Lusztig polynomials

نویسنده

  • Federico Incitti
چکیده

We prove that the Kazhdan-Lusztig polynomials are combinatorial invariants for intervals up to length 8 in Coxeter groups of type A and up to length 6 in Coxeter groups of type B and D. As a consequence of our methods, we also obtain a complete classification, up to isomorphism, of Bruhat intervals of length 7 in type A and of length 5 in types B and D, which are not lattices. Résumé. On montre que les polynômes de Kazhdan-Lusztig sont invariants combinatoires pour les intervaux de longueur jusqu’à 8 pour les groupes de Coxeter de type A et de longueur jusqu’à 6 pour les groupes de Coxeter de type B et D. Comme conséquence de nos méthodes, on obtient aussi une classification complète, à isomorphisme près, des intervaux de Bruhat de longueur 7 pour le type A et de longueur 5 pour les types B et D, qui ne sont pas des réseaux.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special matchings and Kazhdan-Lusztig polynomials

In 1979 Kazhdan and Lusztig defined, for every Coxeter group W , a family of polynomials, indexed by pairs of elements ofW , which have become known as the Kazhdan-Lusztig polynomials of W , and which have proven to be of importance in several areas of mathematics. In this paper we show that the combinatorial concept of a special matching plays a fundamental role in the computation of these pol...

متن کامل

Combinatorial invariance of Kazhdan-Lusztig polynomials on intervals starting from the identity

We show that for Bruhat intervals starting from the identity in Coxeter groups the conjecture of Lusztig and Dyer holds, that is, the R-polynomials and the Kazhdan-Lusztig polynomials defined on [e, u] only depend on the isomorphism type of [e, u]. To achieve this we use the purely poset-theoretic notion of special matching. Our approach is essentially a synthesis of the explicit formula for sp...

متن کامل

Kazhdan-lusztig and R-polynomials, Young’s Lattice, and Dyck Partitions

We give explicit combinatorial product formulas for the maximal parabolic Kazhdan-Lusztig and R-polynomials of the symmetric group. These formulas imply that these polynomials are combinatorial invariants, and that the KazhdanLusztig ones are nonnegative. The combinatorial formulas are most naturally stated in terms of Young’s lattice, and the one for the Kazhdan-Lusztig polynomials depends on ...

متن کامل

Parabolic Kazhdan-lusztig Polynomials for Hermitian Symmetric Pairs

We study the parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs. In particular, we show that these polynomials are always either zero or a monic power of q, and that they are combinatorial invariants.

متن کامل

A Flag Whitney Number Formula for Matroid Kazhdan-Lusztig Polynomials

For a representation of a matroid the combinatorially defined Kazhdan-Lusztig polynomial computes the intersection cohomology of the associated reciprocal plane. However, these polynomials are difficult to compute and there are numerous open conjectures about their structure. For example, it is unknown whether or not the coefficients are non-negative for non-representable matroids. The main res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 113  شماره 

صفحات  -

تاریخ انتشار 2006